Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz
sascha.kurz@uni-bayreuth.de

joint work with

Jörg Rambau
joerg.rambau@uni-bayreuth.de

University of Bayreuth

ISDA 2007 23.10.2007
Business model of a fashion discounter

Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction

A common approach
Top-Dog-Index
Statistical evidence
Supply optimization procedure
Business model of a fashion discounter

Formula for economic success

Be cheap, efficient, and trade exactly what you can sell to your customers:
Business model of a fashion discounter

Formula for economic success

Be cheap, efficient, and trade exactly what you can sell to your customers:

1. hit the vogue with your products
2. meet the branch-dependent demand for sizes as closely as possible
Formula for economic success

Be cheap, efficient, and trade exactly what you can sell to your customers:

1. hit the vogue with your products ⟷ delicate issue
2. meet the branch-dependent demand for sizes as closely as possible ⟷ topic of this talk
Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction

A common approach
Top-Dog-Index
Statistical evidence
Supply optimization procedure

Setting

Figures of our business partner

- over 1100 branches in Germany and Austria
- over over 4500 employees
- over 400 million turnover per year

Business strategy: one shot sale and supply

Due to cost reasons our partner orders a particular product and distributes it to his branches only once. Reordering or redistribution is not possible.

⇝ Cutting of prices after a while.
Setting

Figures of our business partner
- over 1,100 branches in Germany and Austria
- over 4,500 employees
- over 400 million turnover per year

Business strategy: one shot sale and supply
Due to cost reasons our partner orders a particular product and distributes it to his branches only once. Reordering or redistribution is not possible. Cutting of prices after a while.

start of sales period

order distribution

3-6 months
Problem

How can we forecast the demand for each branch individually using only small amounts of sales data?

Introduction

A common approach

Top-Dog-Index

Statistical evidence

Supply optimization procedure
Problem

How can we forecast the demand for each branch individually using only small amounts of sales data?

Definition

For a given branch b and a given commodity group C we denote the corresponding demand by $\Delta(b, C)$.

Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction

A common approach

Top-Dog-Index

Statistical evidence

Supply optimization procedure
Problem

How can we forecast the demand for each branch individually using only small amounts of sales data?

Definition

For a given branch b and a given commodity group C we denote the corresponding demand by $\Delta(b, C)$.

Practical relevance

- shorter life cycles of products
- sold out items
- very noisy data
Given data base

Available data

- For each commodity group C we have a small set P_C of products with historic sales information.
- For each product p, day of sales d, and branch b we are given the number $\omega(p, d, b)$ of items which are sold in branch b, of product p in the first d days of sale.
Available data

- For each commodity group C we have a small set P_C of products with historic sales information.
- For each product p, day of sales d, and branch b we are given the number $\omega(p, d, b)$ of items which are sold in branch b, of product p in the first d days of sale.

Remark

Since the $\omega(p, d, b)$ are very small numbers, it does not make sense to consider

$$\frac{\omega(p, d, b)}{\sum_\beta \omega(p, d, \beta)}$$
Aggregated demand fraction

For given branch b, commodity group C, and day of sales d one may consider

$$\phi_d(b, C) := \frac{\sum_{p \in P_c} \omega(p, d, b)}{\sum_{p \in P_c} \sum_{\beta} \omega(p, d, \beta)}$$

as an estimation for $\Delta(b, C)$.

A common approach
A common approach

Aggregated demand fraction

For given branch b, commodity group C, and day of salas d one may consider

$$\phi_d(b, C) := \frac{\sum_{p \in P_c} \omega(p, d, b)}{\sum_{p \in P_c} \sum_{\beta} \omega(p, d, \beta)}$$

as an estimation for $\Delta(b, C)$.

Question

Which day of sales d yields the best estimation for the demand $\Delta(b, C)$?
Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction
A common approach
Top-Dog-Index
Statistical evidence
Supply optimization procedure

Discrepancy

Definition
Let B be the set of branches, C be a fix commodity group, and D_1, D_2 be a partition of our data set. By $\phi_b(d, D)$ we denote the estimate $\phi_d(b, C)$ on the data set D.

$$\delta_d(D_1, D_2) := \frac{1}{|B|} \sum_{b \in B} |\phi_b(d, D_1) - \phi_b(d, D_2)|$$
Discrepancy

Definition

Let B be the set of branches, C be a fix commodity group, and D_1, D_2 be a partition of our data set. By $\phi_b(d, D)$ we denote the estimate $\phi_d(b, C)$ on the data set D.

The discrepancy of ϕ_b with respect to D_1, D_2 is defined as

$$\delta_d(D_1, D_2) := \frac{1}{|B|} \cdot \sum_{b \in B} |\phi_b(d, D_1) - \phi_b(d, D_2)|$$
Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction

A common approach

Top-Dog-Index

Statistical evidence

Supply optimization procedure
Our approach

Definition

Let $\theta_b(p)$ be the day of sales the last item of product p is sold out in branch b, where $\theta_b(p) = \infty$ is possible.
Our approach

Definition

Let $\theta_b(p)$ be the day of sales the last item of product p is sold out in branch b, where $\theta_b(p) = \infty$ is possible.

Scoring method

Winning points:

$$W(b) := \left\{ p \in C \left| \frac{|B_p|}{3} \geq \left| \{ b' \in B_p \mid \theta_{b'}(p) \geq \theta_b(p) \} \right| \right\}$$

Losing points:

$$L(s) := \left\{ p \in C \left| \frac{|B_p|}{3} \geq \left| \{ b' \in B_p \mid \theta_{b'}(p) \geq \theta_b(p) \} \right| \right\}$$
The Top-Dog-Index

\[TDI(b) := \frac{W(b) + \kappa}{L(b) + \kappa}, \]

where \(\kappa \) is a fix dampening parameter.

Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction
A common approach
Top-Dog-Index
Statistical evidence
Supply optimization procedure
The Top-Dog-Index

$$TDI(b) := \frac{W(b) + \kappa}{L(b) + \kappa},$$

where κ is a fix dampening parameter.

Interpretation

If we have

$$TDI(b_1) \gg TDI(b_2)$$

then the supply of products in the commodity group C is too scarce for branch b_1 in comparison to the supply in branch b_2.
Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction

Top-Dog-Index

The Top-Dog-Index

\[
TDI(b) := \frac{W(b) + \kappa}{L(b) + \kappa},
\]

where \(\kappa \) is a fix dampening parameter.

Interpretation

If we have

\[
TDI(b_1) \gg TDI(b_2)
\]

then the supply of products in the commodity group \(C \) is too scarce for branch \(b_1 \) in comparison to the supply in branch \(b_2 \).

\(\Rightarrow \) supply more items to \(b_1 \) and fewer items to \(b_2 \)
Data sets

Data subsets

Assign for each product a random number in \(\{1, 2, 3, 4\} \).

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_1)</td>
<td>{1, 2}</td>
</tr>
<tr>
<td>(D_2)</td>
<td>{3, 4}</td>
</tr>
<tr>
<td>(D_3)</td>
<td>{1, 3}</td>
</tr>
<tr>
<td>(D_4)</td>
<td>{2, 4}</td>
</tr>
<tr>
<td>(D_5)</td>
<td>{3}</td>
</tr>
<tr>
<td>(D_6)</td>
<td>{1, 2, 4}</td>
</tr>
<tr>
<td>(D_7)</td>
<td>{1, 2, 3, 4}</td>
</tr>
</tbody>
</table>

Table: Assignment of test sets
Robustness of the TDI

Definition

We say that the Top-Dog-Index is statistically significant if we have

\[
\frac{TDI(b, D_i)}{TDI(b, D_j)} \approx \frac{TDI(b', D_i)}{TDI(b', D_j)}
\]

(1)
Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction

A common approach

Top-Dog-Index

Statistical evidence

Supply optimization procedure

Definition

We say that the Top-Dog-Index is statistically significant if we have

\[
\frac{TDI(b, D_i)}{TDI(b, D_j)} \approx \frac{TDI(b', D_i)}{TDI(b', D_j)}
\]

(1)

Table: Relative distribution of deterministic and random numbers.
Table: Relative distribution of the Top-Dog-Index on different data sub sets and branches vs. relative distribution of ϕ. (5)
Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction

A common approach

Top-Dog-Index

Statistical evidence

Supply optimization procedure

Table: Occuring TDIs
Heuristic supply optimization procedure based on the TDI

Let $S(b)$ be the historic supply of branch b being normalized so that we have $\sum_{b \in B} S(b) = 1$.

Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz
Heuristic supply optimization procedure based on the TDI

- Let $S(b)$ be the historic supply of branch b being normalized so that we have $\sum_{b \in B} S(b) = 1$.

- Partition the interval $(0, \infty)$ of the positive real numbers into a given number of l appropriate chosen intervals I_j.

```latex
\DeclareMathOperator{TDI}{TDI}
Let S(b) be the historic supply of branch b being normalized so that we have \( \sum_{b \in B} S(b) = 1 \).

Partition the interval \((0, \infty)\) of the positive real numbers into a given number of \(l\) appropriate chosen intervals \(I_j\).
```
Heuristic supply optimization procedure based on the TDI

- Let \(S(b) \) be the historic supply of branch \(b \) being normalized so that we have \(\sum_{b \in B} S(b) = 1 \).
- Partition the interval \((0, \infty)\) of the positive real numbers into a given number of \(l \) appropriate chosen intervals \(\mathcal{I}_j \).
- Chose \(l \) correspondig increment numbers \(\Delta_j \).
Heuristick supply optimization procedure based on the TDI

- Let $S(b)$ be the historic supply of branch b being normalized so that we have $\sum_{b \in B} S(b) = 1$.

- Partition the interval $(0, \infty)$ of the positive real numbers into a given number of I appropriate chosen intervals I_j.

- Chose I correspondig increment numbers Δ_j.

- Set
 \[
 \tilde{S}(b) = \frac{S(b) + \Delta_{j(b)}}{\sum_{b' \in B} S(b') + \Delta_{j(b')}}
 \]
 for all branches b, where $j(b)$ is the unique index with $TDI(b) \in I_{j(b)}$.
Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings

Sascha Kurz

Introduction
A common approach
Top-Dog-Index
Statistical evidence
Supply optimization procedure

End of the talk
Thank you very much for your attention!